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Combining large-scale vegetation plot databases 
with a plant-community-based approach to assess 

fine-grained thermal variability within 1-km2 
climatic units across Northern Europe 



Why caring about fine-grained thermal variability? 

Ccl: Short-distance escapes are available for 
plants to persist locally amidst unfavorable 
regional climatic conditions suggesting plant 
biodiversity to be less endangered than is 
expected by climate warming projections 

Night temperatures Day temperatures 
Furka pass in the Swiss Alps:  
Using high-resolution thermal 
imaging, Scherrer and Körner (2010) 
have shown that mean temperature 
during day time can range from 6 to 
24C within this small area (b) 
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Can we assess it across broad spatial extents? 

 Issue: 
- The cost of using networks of miniature data loggers or high-resolution thermal 
images across large spatial extents is a limiting factor 

 Solution: 
- Vegetation geodatabases are already available across large spatial extents and can 
be used in combination with semi-quantitative plant species indicator values to 
infer biologically relevant temperature conditions from plant assemblages within 
<1000-m2 units (community-inferred temperatures: CiT) 
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CiT 
range? 

Aims 

 Testing whether or not spatial turnover in CiT is greater than spatial turnover in 
globally interpolated temperatures (cf. WorldClim temperature grids) 
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 Analyzing the relationship between CiT range and variables reflecting terrain 
complexity (elevation range, roughness, etc.) at 1-km resolution 
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 Assessing thermal variability (CiT range) within 1-km2 units (cf. WorldClim 
climatic unit, http://www.worldclim.org/) 
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Plot-scale data 

 42117 vegetation plots across 
Northern Europe 

MAT (°C) 
 138 of these plots are equipped 

with miniature soil data-loggers 
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Jan (MMT1) 
Feb (MMT2) 
Mar (MMT3) 
Apr (MMT4) 
May (MMT5) 
Jun (MMT6) 
Jul (MMT7) 
Aug (MMT8) 
Sep (MMT9) 
Oct (MMT10) 
Nov (MMT11) 
Dec (MMT12) 

Gridded data 

 1 digital elevation model grid 
across Northern Europe at 33-m 
resolution (ASTERGDEM) 

(m) 
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 12 mean monthly temperature 
grids across Northern Europe at 1-
km resolution (WorldClim) 

(°C) 

1 km 

For each 1-km2 unit, we computed: 
eleR, slopR, northR, eastR, expoR and 
roughM 
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Bottom-up modeling approach to compute CiT 

MMT7 from 
data-logger: 
LmT = -1°C 

1-km2 spatial unit 
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Ellenberg averaged value, EaV (T) 
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MMT7 

138 vegetation plots 

Ellenberg 
averaged value: 

EaV (T) = 3 
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CiT = -4°C 
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Top-down modeling approach to compute CiT 
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MMT7 from 
WorldClim: 
GiT = -1°C 

Ellenberg 
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EaV (T) = 3 
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EaV reflects mean growing-season temperature   

June, July, August Calibration 

B
o

tt
o

m
-u

p
 a

p
p

ro
ac

h
 

To
p

-d
o

w
n

 a
p

p
ro

ac
h

 

J F M A M J J A S O N D 

Validation 

J F M A M J J A S O N D 

Introduction  Materials  Methods  Results  Conclusions 8/22 



1-km2 thermal variability ranges from 0 to 7°C 

 569 1-km2 WorlClim units used to 
assess thermal variability across 
Northern Europe 

 Thermal variability averages 2.1°C 
(SD = 0.97°C) across Northern 
Europe 
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CiT underestimates fine-grained thermal variability 
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 Our community-based approach (CiT) underestimate the actual fine-grained 
thermal variability compared with localized miniature soil data-loggers (LmT) 



 Thermal variability increases with topographic complexity (terrain roughness) 
averaging 1.97°C (SD = 0.84°C) and 2.68°C (SD = 1.26°C) within the flattest 
(PC1<0) and roughest (PC1>0) 1-km2 WorldClim units respectively 

Rough terrains offer higher thermal variability 

 Thermal variability peaks at 60–65°N, where rough terrains are predominant 
due to the gross topography from southern to mid-Norway 

Elevation range (m) 
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Mid latitudes (50°N) High latitudes (90°N) 

Daily solar 
azimuthal 

range during 
the summer 

solstice 

Daily solar 
elevational 

range during 
the summer 

solstice 
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 Complex interactions between the latitudinal position and topographic 
complexity of a given 1-km2 WorlClim unit affect thermal variability    

Sun path changes with latitude 
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Sun path at 50°N during the solstices 

Introduction  Materials  Methods  Results  Conclusions 13/22 

h
tt

p
:/

/e
n

.w
ik

ip
e

d
ia

.o
rg

/w
ik

i/
S

u
n

_
p

a
th

#
m

e
d

ia
v
ie

w
e

r/
F

ile
:S

o
ls

ti
c
e

-5
0

.j
p

g
 

Winter 
solstice 

Summer 
solstice 



Sun path at 90°N during the solstices 
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Mid latitudes (50°N) High latitudes (90°N) 

Impact of daily 
variations in 

solar azimuth 
and elevation 

angles on 
topographic 

shading during 
the summer 

solstice 
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 Lower solar elevation angles during the summer solstice at high latitudes 
increase climatic contrasts between north- and south-facing slopes 

Compensation effects  
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 But a higher solar azimuthal range during the summer solstice at high latitudes 
decrease climatic contrasts between north- and south-facing slopes 

El
ev

at
io

n
 (

m
) 

El
ev

at
io

n
 (

m
) 



Spatial turnover in CiT is higher 

 349 WorldClim units at 10-km resolution used to compare spatial turnover in 
CiT with spatial turnover in globally interpolated temperature (GiT) 

 Spatial turnover in CiT within 100-km2 units was, on average, 1.8 times greater 
(0.32°C/km) than spatial turnover in GiT (0.18 °C/km) 
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Take-home message 

Fine-grained thermal variability should also be incorporated (e.g., as covariates) 
in species distribution models (SDMs) using WorldClim or coarser temperature 
grids to simultaneously: 
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 Increase the probabilities of underestimated 
local persistence events 

 Decrease the probabilities of overestimated 
local extinction events 
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Both aspects contributing either to: 

 Or temporary relief of populations referred to as 
“holdouts” if fine-grained thermal variability 
cannot buffer regional climate change in the 
long term (i.e. extinction debt) 

 Long-term survival of populations referred to as 
“microrefugia” if fine-grained thermal variability 
can buffer unfavorable regional climate until it 
returns to favorable conditions 



Holdouts but not microrefugia 
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 Given that future climate change conditions is unlikely to return to the present 
state, holdouts are more likely than microrefugia  

 Fine-grained SDMs incorporating population dynamic processes are needed to 
improve our abilities to forecast potential holdouts and microrefugia  



An application using hybrid models 
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 SDMs: fine-grained climatic grids at 100-m resolution across the European Alps 

 Mechanistic simulations: dispersal limitations and persistence capabilities 

+ 



Illustration with Ranunculus glacialis L., 1753 
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Photo: Annibal Pauchard 
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Demographic and dispersal parameters matter 
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Unlimited dispersal 

No dispersal 

Niche 
models 

Forecasted distribution changes based on future climate change for a total of 150 high-
mountain plant species  

Demographic and dispersal 
parameters set to high values 

Demographic and dispersal 
parameters set to low values 

Hybrid 
models 

Hybrid models predicts average range size reductions of 44–50% by the end of 
the 21st century against 49-82% for traditional niche models 



Holdouts or microrefugia? 
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Hybrid 
models 

Niche 
models 

Percentage of occupied sites despite unsuitable climatic conditions will increase under 
future climate change and involve adult survival as well as clonal reproduction for 
population to persist either as holdouts or microrefugia 
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