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Trees and understory vegetation have shown
strong biotic changes since the 1970s

g —

Observed changes in population dynamics over time:

» Tree mortality rates are increasing (van Mantgem et al., 2009)
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edysan g } Trees and understory vegetation have shown
=~ strong biotic changes since the 1970s

Observed changes in population dynamics over time:

» Percentages of crown defoliation at the southern range limit of
European trees are increasing (Carnicer et al., 2011)
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W Trees and understory vegetation have shown
strong biotic changes since the 1970s
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Observed changes in species distribution over time:

> Trees are contracting their ranges poleward (Zhu et al., 2012)
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Trees and understory vegetation have shown
strong biotic changes since the 1970s

Observed changes in species distribution over time:

» Understory plants are shifting upward (Lenoir et al., 2008)
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During the 20th Century
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W Trees and understory vegetation have shown
W strong biotic changes since the 1970s
e

Observed changes in community composition over time:

» Mountain forests are more thermophilous (Bertrand et al., 2011)
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climate warming in lowland forests
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W Trees and understory vegetation have shown
W strong biotic changes since the 1970s
e

Observed changes in community composition over time:

» Woodlands are homogenizing (Keith et al., 2009)
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Sally A. Keith, Adrian C. Newton, Michael D. Morecroft, Clive E. Bealey and James M. Bullock
Proc. R. Soc. B (2009) 276, 3539-3544
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sSeveely’) And several global-change drivers have been

attributed to these biotic responses
N2

Among the most cited global-change drivers potentially causing
the observed biotic changes for trees or understory plants:

» Climate warming (Lenoir et al., 2008; Bertrand et al., 2011)

» Droughts (Van Mantgem et al., 2009; Carnicer et al., 2011)

» Acidification (Thimonier et al. 1994; Riofrio-Dillon et al., 2012)
» Eutrophication (Thimonier et al. 1994; Keith et al., 2009)

» Forest-canopy closure (Keith et al., 2009; Verheyen et al.,

> Kl%kg%ative species invasions (Hale et al., 2006)

» Herbivory pressure (Rooney, 2009)
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But, what is the respective contribution of each of
- these global-change drivers?

Does the current relative contribution of each global-change driver
on the observed biotic changes for trees and understory plants
reflects future predictions?
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So far, very few attempts to answer this timely

mjm question for trees and understory vegetation
BN

But, see Carnicer et al. (2011) for trees and Verheyen et al. (2012)
for understory vegetation:

» Forest-canopy closure contribute more than nitrogen deposition
to explain eutrophication signal in understory plant communities

Driving factors behind the eutrophication signal in

Variable Value SE d.f. t-value P-value . .
understorey plant communities of deciduous
Intercept -0.182 0.098 765 ~1.848 0.065 temperate forests
No. years -0.002 0.001 15 —1.601 0.130 " . ] ) )
Nimcan 0.006 0.003 15 1.919 0.074 Kris Verheyen *, Lander Baeten', Pieter De Frenne', Markus Bernhardt-Romermann®, .

Jorg Brunet®, Johnny Cornelis*, Guillaume Decocq®, Hartmut Dierschke®, Ove Eriksson’,
Radim HédI®, Thilo Heinken®, Martin Hermy'°, Patrick Hommel'!, Keith Kirby'2, Tobias
Naaf'®, George Peterken'®, Petr Petfik'®, Jorg Pfadenhauer'S, Hans Van Calster'”,
Gian-Reto Walther'®, Monika Wulf'® and Gorik Verstraeten’

Journal of Ecology 2012, 100, 352-365

mL, -0.027 0.007 765 -3.616 <0.001

Although forest-canopy closure is an important driver of changes
In understory plant composition, the relative contribution of climate
change was not assessed and could explain part of the signal
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Disentangling drivers of observed changes in

W forest understory plant community composition
oo or !
=AM

Focusing on the observed thermophilization of forest understory
vegetation in France in response to temperature increases (dT/
dt), (Bertrand et al. 2011), Bertrand (2012) aims at assessing the
amplifying/mitigating effects of changes in:

> Precipitation (dP/dt)

» Soil nitrogen (dCN/dt)

» Soil pH (dpH/dt)

» Understory light (dL/dt)

» Thermal tolerance (dA/dt)

This assessment was done separately for lowland and highland
forests due to the lowland-for-highland disparity in biotic changes
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w/ The response variable: a floristic index measuring
temperature turnover or thermophilization

Difference in floristically reconstructed temperatures (AFrT)
between 1965-1986 and 1987-2008 from a transfer function:
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W The set of explanatory variables: temperature
W increase and other global-change drivers
(4

Difference in mean climatic conditions between 1965-1986 and
1987-2008 for each of the 1000 time trends:

» Changes in mean annual temperature conditions (AT) and July
precipitations (AP) obtained from yearly climatic data at 1-km

resolution
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The set of explanatory variables: temperature
- increase and other global-change drivers

Difference in mean edaphic conditions between 1965-1986 and
1987-2008 for each of the 1000 time trends:

» Changes in CN ratio (ACN) and soil pH (ApH) obtained from
differences in bioindicated values (cf. transfer functions based

on WA-PLS)
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W The set of explanatory variables: temperature
W increase and other global-change drivers
(4

Difference in mean biotic conditions between 1965-1986 and
1987-2008 for each of the 1000 time trends:

» Changes in light (AL) conditions obtained from differences in
community mean values (cf. Ellenberg’s ordinal scale)

» Changes in thermal tolerance (AA) at the community level
obtained from differences in community mean values of
species’ thermal tolerances (Ttol) (cf. more generalists or

pySpecialists?)
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W Accounting for understory plant accessibility to
their forest habitats
s A\\\\“'

Bertrand (2012) used 2 indices to account for habitat accessibility:

» The minimum distance (Dmin1) separating each given floristic
relevé belonging to the period 1987-2008 to a forest habitat with
analogous temperature conditions during 1965-1986

» The aggregation index (Al) of forest habitat within a radius of 20
km around each floristic relevé during 1987-2008
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W Assessing the relative contribution of temperature
W increase and other global-change drivers
(A

Ordinary least square (OLS) regressions and variance partitioning
were used to explain the observed thermophilization of understory

plant communities in response to climate warming between
1965-1986 and 1986-2008 (AFrT):

AFrT = f(AT, AP, ACN, ApH, AL, AA, Dmin1, Al)
» Sample size (N) = 1000

» R2? between explanatory variables < 0.2
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Mitigating and amplifying effects of secondary
global-change drivers in lowland forests
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W Perfect filtering of understory vegetation changes
due to climate warming solely in highland forests
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Primary and secondary drivers of the observed
~ thermophilization of understory vegetation

Take-home messages (Bertrand 2012):

» Climate warming is the primary global-change driver of the
observed thermophilization of understory plant communities

» In lowland forests, two secondary drivers are mitigating this
thermophilization effect of climate warming and contributing to
the observed lag or climatic debt (Bertrand et al., 2011):

* Anincrease in thermal tolerance due to more generalist
species making up understory plant communities

» Aclosure of forest canopies likely due to the abandonment
of coppicing to the benefit of intense management practices
in lowland European forests (Verheyen et al., 2012)
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